Non-Local Means Denoising of Dynamic PET Images
نویسندگان
چکیده
OBJECTIVE Dynamic positron emission tomography (PET), which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM). THEORY NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch. METHODS To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches. RESULTS The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high intensity details while lowering the background noise variance.
منابع مشابه
Segmentation Based Denoising of PET Images: An Iterative Approach via Regional Means and Affinity Propagation
Delineation and noise removal play a significant role in clinical quantification of PET images. Conventionally, these two tasks are considered independent, however, denoising can improve the performance of boundary delineation by enhancing SNR while preserving the structural continuity of local regions. On the other hand, we postulate that segmentation can help denoising process by constraining...
متن کاملA New Shearlet Framework for Image Denoising
Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...
متن کاملDenoising Multi-view Images Using Non-local Means with Different Similarity Measures
We present a stereo image denoising algorithm. Our algorithm takes as an input a pair of noisy images of an object captured from two different directions (stereo images). We use either Maximum Difference or Singular Value Decomposition similarity metrics for identifying locations of similar searching windows in the input images. We adapt the Non-local Means algorithm for denoising collected pat...
متن کاملPET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging.
Physiological functions (e.g., cerebral blood flow, glucose metabolism, and neuroreceptor binding) can be investigated as parameters estimated by kinetic modeling using dynamic positron emission tomography (PET) images. Imaging of these physiological parameters, called parametric imaging, can locate the regional distribution of functionalities. However, the most serious technical issue affectin...
متن کاملNon-local Means for Stereo Image Denoising Using Structural Similarity
We present a novel stereo image denoising algorithm. Our algorithm takes as an input a pair of noisy images of an object captured form two different directions. We use the structural similarity index as a similarity metric for identifying locations of similar patches in the input images. We adapt the Non-Local Means algorithm for denoising collected patches from the input images. We validate ou...
متن کامل